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A myriad of other design combinations seem to be available,
as simple extrapolations of this proven design, but they have not
been seriously considered for likely appearance of other practi-
cal problems. By using a CMP-02 type comparator with input
offset current specifications of 10 nA /max. and response speed
of 250 ns/typical, a many-hundred-channel analog input, 8-bit
output magnitude, at a conversion rate of 0.25 MHz, appears
possible. Speed of conversion gains much greater than those
demonstrated are unlikely, because of the many components the
signals must circulate through for each magnitude bit. An esti-
mate would suggest as an example a 16-channel analog input
with 4-bit output magnitude resolution at a conversion rate of
2 MHz as an upper limit for this type of circuit.

ACKNOWLEDGMENT

The authors express their gratitude to James Pappin for
developing the LABVIEW data acquisition program used in this
paper, and for pre-testing it on a conventional A/D converter.

REFERENCES

[1] S. Soclof, Applications of Analog Integrated Circuits.
NJ: Prentice-Hall, 1985.

[2}] B. M. Gordon, “Linear electronic analog/digital conversion architec-
tures, their origins, parameters, limitations, and applications,” IEEE
Trans. Circuits Syst., vol. CAS-25, pp. 391-418, July 1978.

[3] Y. Ichioka and J. Tanida, “Optical parallel logic gates using a shadow-
casting system for optical digital computing,” Proc. IEEE, vol. 72, pp.
787-801, July 1984.

[4] D. Casasant and E. Baranoski, “Directed graph for adaptive organiza-
tion and learning of a knowledge base,” Applied Optics, vol. 27, pp.
534-540, 1988.

[S] A Moopenn, J. Lambe, and A. P. Thakoor, “Electronic implementation
of associative memory based on neural network models,” IEEE Trans.
Syst. Man, Cybern., vol. SMC-17, pp. 325-331, Mar./Apr. 1987.

[6] R. A. Athale, H. H. Szu, and C. B. Friedlander, “Optical implementa-
tion of associative memory with controlled nonlinearity in the correla-
tion domain,” Opt. Lett., vol. 11, pp. 482-484, July 1986.

[7]1 Labview™, National Instruments Corp., 12109 Technology Boulevard,
Austin, TX 78727-6204.

Englewood Cliffs,

Frequency Domain Analysis of Hopf Bifurcations
in Electric Power Networks

H. G. KWATNY anp G. E. PIPER

Abstract —In this paper we discuss an approach for studying certain
types of parametric instabilities in electric power networks that are
associated with a Hopf bifurcation. The frequency domain version of the
Hopf bifurcation theorem due to Mees and Chua [9] allows us to
complete the example of power system flutter instability described by
Kwatny and Yu [7].

I. INTRODUCTION

In power systems analysis, stability of an equilibrium point is
often determined by investigation of the linearized dynamics.
When system parameters vary, so does the linearized model and
stability of the equilibrium point may be lost. When this occurs,
it typically takes place in either of two ways: a single real
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eigenvalue of the linearized dynamics or a pair of complex
conjugate eigenvalues crosses the imaginary axis. Loss of linear
system stability in the former case is sometimes called a “diver-
gence instability” and in the latter a “flutter instability.” A
complete understanding of the underlying mechanics of the
instability can only be obtained, however, by an analysis of the
nonlinear system dynamics. In nonlinear dynamics parlance,
when the instability is associated with the variation of a single
parameter the divergence instability is typically a saddle-node
static bifurcation and the flutter instability is typically a Hopf
bifurcation.

There has been an eroneous perception that Hopf bifurca-
tions do not occur in power systems. Some of this attitude may
be due to comments in Venikov et al. [12] that suggest that
flutter instabilities are not likely in normal power system opera-
tions, and also to some results of Arapostathis et al. [3] who
argue that the classical swing equations with lossless lines and
damping do not possess (so-called type one) periodic solutions.
On the other hand, evidence of the occurrence of Hopf bifurca-
tions does exist. In [10], van Ness et al. suggest that an observed
oscillation is associated with a Hopf bifurcation. Abed and
Varaiya [1] illustrate subcritical Hopf bifurcations in a two-
machine model with a lossy transmission line. Alexander [2]
provides a complete analysis of this case and demonstrates the
occurrence of both subcritical and supercritical Hopf bifurca-
tions. Kwatny and Yu [7] give an example of a flutter instability
in a three-machine classical network with lossy lines. Another
example of a flutter instability is given by Rajagopalan ez al. [11]
in which a three-machine system is modeled with a two-axis
representation and excitation is included.

When a flutter instability is observed in the linearized model,
it is important to complete the analysis and to characterize the
bifurcation completely. This is so because a loss in stability of
the equilibrium point which is accompanied by the appearance
of a small stable periodic motion (supercritical Hopf) may be of
relatively minor concern whereas the existance of an unstable
periodic motion near a stable equilibrium (subcritical Hopf)
could portend catastrophic consequences following relatively
minor disturbances. In this paper we present an approach to the
analysis of Hopf bifurcations that may be conveniently applied
to systems of reasonable scale. We show that the power system
flutter instability of [7] corresponds to a supercritical Hopf
bifurcation.

II. MopEeL AND PROBLEM DEFINITION

The dynamical equations of motion of the classical power
system model may be written as [6]

M5+ D8+ f,(8,6,V,n)=0 (2.12)
f2(5»¢’V>IL) =0

where M denotes the diagonal matrix of generator rotor iner-

(2.1b)

“tias, D the damping matrix, 8 the n-vector of generator internal

bus angles, ¢ the m + l-vector of load bus angles, V the l-vector
of PQ load bus voltage magnitudes, and u a k-vector of network
and load parameters. The functions f;: Rr+m+2+k  R" and

fo: Rr+m+20ek _ Rm+2 gre the usual load flow relations.

Let (8%, ¢*,V*, u*) be an equilibrium point of (2.1). Suppose
that the equilibrium point is strictly causal in the sense that
there exist unique functions ¢(8, ), E(8, p) satisfying
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£,(8,8(8, 1), V(8, n), u) = 0 in a neighborhood of (8*,¢*,V'*, u*)
with ¢(8*,u*)=¢* and V(5*,u*)=V* Under these circum-
stances, (2.1) is locally equivalent to the system

Mé+ D5+ g(8,1)=0 (2.2)

where g(8, ) = f{(8, (8, u),V(8, n), u). Moreover, the lin-
earized dynamics of (2.1) reduce to the form

Mi+ Dx+ Kx=0 (2.3)
where
D,fi ][ Dafa] ™
K={D5f1—[sz11HDZfZ] Dafz} (2<4)

and x=6—6* In general, M is positive definite and D is
positive semi-definite. The matrix K, however, is not typically
symmetric. K depends on the parameter w, both. explicitly
through the Jacobian matrices in (2.4) and implicitly through the
variation of the equilibrium point with p. Note also, that in the
event that only constant admittance loads are present, then (2.2)
is the global model with g(8,u)= fi(8,1). To simplify the
following discussion we focus on this case.

In the absence of damping, the linearized power system
model has the form

M# + Kx =0. (2.5)

For a stable equilibrium of (2.5), all eigenvalues are on the
imaginary axis. Kwatny and Yu [7] show that under load param-
eter variations, loss of stability occurs when a pair of imaginary
eigenvalues meet and move off the imaginary axis. When the
meeting takes place at jw # 0, the loss of stability of the equilib-
rium is typically accompanied by the presence of a limit cycle.
Such bifurcation points usually correspond to either subcritical
or supercritical Hopf bifurcations. This is the situation of inter-
est. Thus we wish to analyze a transition of the eigenvalue
pattern through the sequence: (% jw;, * jw;)— (jw)* -
(+ o + jw). The classical Hopf bifurcation theorem asserts that
if a simple pair of conjugate eigenvalues cross the imaginary axis
transversally at p, (D,Re[A(uq)]+0) then a periodic orbit
exists for parameter values near p.

The transition of the eigenvalue pattern for (2.5) does not
satisfy the transversality condition of the Hopf bifurcation theo-
rem. In fact, D, Re{A(p)] does not exist at u = uo. However, by
strategically introducing small damping to the conservative power
system mode the transversality condition can be induced. Damp-
ing in power systems arises in small amounts from many differ-
ent sources and there is no universally accepted model of
dissipation. For analytical convenience we will introduce uni-
form damping so that the normal modes of the conservative
system are preserved.

D =AM, (2.6)

The eigenvalue behavior as a function of w is transformed by
the introduction of uniform damping so that the transversality
condition is satisfied, which allows us to apply the Hopf bifurca-
tion theorem.

A is a positive scalar.

III. FREQUENCY-DOMAIN ANALYSIS

To being our analysis, we rewrite (2.2) in first order form

%= Ax + Bg(Cx,p) (3.1)
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where

B 0 I
=19 A= ,
* [a] [0 fM-ID}

B:[ 0 1], c=[1 o]

s (32)

Equations (3.1) can be formulated into infinitely many equiva-
lent feedback representations by introducing an arbitrary I X m
matrix R as follows:

i=Ax+ BRy + Blg(y,n)— Ry}, (3.3)

Taking the Laplace transform of both sides of (3.3) and
solving for #(x) as a function of the Laplace variable s, then
writing e = — Cx, we obtain

y=0Cx.

L(e)=—G(s,pn)L(u) (3.4a)

where ‘
G(s,u)=C[sI—(A+BRC] 'B (3.4b)
u=f(e,n)=g(-e,n)-Ry. (3.4c)

Equations (3.4) define a continuum of equivalent nonlinear
multiple-loop feedback representations that have been sepa-
rated into a dynamical linear part with a transfer matrix G and
a memoryless nonlinear part f.

An equilibrium point of (3.4), e*, satisfies the relation

G(0,p)f(e*,n)=—e*. (35

Stability of the equilibrium can be determined by linearizing
(3.4¢) at ¢* and applying the multivariable Nyquist criterion [8].
The linearized system has open loop transfer function
G(s, p)J (), where J(n):= D, f(e*,p). Let ALs), i, 0o, n, de-
note the characteristic functions associated with the open loop
transfer matrix. If the open loop system has no uncontrollable
and or unobservable modes with characteristic frequencies in
the right-half plane then the closed loop system is stable if and
only if the number of anticlockwise encirclements of the point
— 1+ jO by the set of characteristic loci of G(s, u)J(p) is equal
to the number of right-half plane poles of G(s, u)(p).

We assume that there is a critical value of u, denoted w,
such that the linearized system has precisely one pair of simple
imaginary eigenvalues + jo,. This is equivalent to the open-loop
matrix G(jwg, o)1) having precisely one eigenvalue at
—1+ j0. According to the Hopf bifurcation theorem, we expect
(3.4) to exhibit an isolated periodic motion for p sufficiently
close to p. In the frequency-domain Hopf bifurcation analysis,
the periodic motion is approximated by a harmonic balance
solution.

e(t)=ey+ Y Ekeiket

k=—w

(3.6a)

u(ty=ug+ 3, Ukelkot,

= —o0

(3.6b)

Since e(t),u(t) are real valued functions, the Fourier coeffi-
cients satisfy the relations

E~k=E, U*=U*
The coefficients are related across the linear part of the system
by
E*=-G(jo,n)U* (3.7

Since the amplitude of the limit cycle is assumed to be small for
w near u, (so that e(t) remains near eg), it is reasonable to




IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. 37, No. 10, ocToBER 1990

characterize the nonlinearity by its Taylor series

©

1
fle:w)=f(eom)+ T 17(Di)-[(e—e0) @] (e —e0).
(3.8)

Substituting the Fourier expansions of e and u, retaining only
second-order harmonics and equating coefficients yields

U'=JE'+ P(w,E")+ O(IE'*) 3.9

where
P(w,E') =~ %(fo)~ [H(0)(D2f)-EVE'®E' + E'@ H(2jw)
-(D}f)~E1-E1]+%(D3f)-E1®E1®E‘ (3.10)

H(s)=(G(s)J+I)~'G(s).

Thus E! is determined up to terms of fourth order by the loop
equation

[G(jo,n)] +I]E'=—-G(jo,n)P(w,EY). (3.11)

Before stating the frequency-domain Hopf bifurcation theorem
let A(jw) denote the characteristic function of G(jw,u)J(p),
which intersects the real axis nearest to the point —1+ j0, the
intersection occurring at w = w,. Also, let w,v denote, respec-
tively, the left and right eigenvectors of G(jw,,u)J(u). Now,
define the complex valued function

-w'G(jo,,n)P(w,,v)

w'v

{(w,)= (3.12)

From [9], we have the following result.

Theorem 3.1: Suppose g in (3.1) is C*, {(w,) given by (3.12) is
nonzero, and the half line —1+ 6%{(w,), 8 real and > 0, inter-
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characteristic loci A, is equal to the number of poles of A,(s)
with positive real part. > 0 is chosen sufficiently small that no
new intersections between the locus and the half line are intro-
duced.

Proof of this theorem along with an enlightening discussion
may be found in [9]. It is shown that E*! is O(8) and in fact the
parameter @ may be thought of as the amplitude of the limit
cycle. The importance of this result is that it retains much of the
convenience of Nyquist and describing function analysis for
systems of large dimension while at the same time it is based on
a rigorous theoretical framework. Moreover it is applicable to
systems with multiple nonlinearities.

IV. AN ExampLE

To illustrate how the frequency-domain Hopf bifurcation the-
orem can be adapted to electric power networks, we will apply it
to the three-machine four-bus example presented in [7]. Bus 1
was taken as the swing bus and the reduced swing equations
were written as

6,+2D,,sin(8,)+ Dy;sin (8, — 8,) + Dy3sin(6,)
+Cycos(8;,—0,)—Ci3cos(8,) =AP;
6, +2D,;sin(6,) + Dyysin(8, —0,) + Dy, sin(6,)
+ Cy3co8(8,—8,)—Cppc0s(0,)=AP, (4.1b)

where 6,=6,-8,, 0,=6,-8,, AP,=P,— P, and AP,=
P; — P,. Note that §;, P, denote, respectively, the ith machine
angle and net power.

Kwatny and Yu [7] identified sets of parameter values that
correspond to bifurcation points of the conservative system.
Case 4 in that paper is generic in one-parameter families and is
indicative of a Hopf bifurcation. This is the case of interest in
the present analysis. The parameter values corresponding to this
bifurcation point are shown in the following.

(4.1a)

Cp Cis Cxn D, Dy, Dy AP AP, Py 0, 0,
0 0 2 1 5774 5774 4.042 2.887 —1.155 1.047 0.5236
Adding uniform damping, (4.1) can be written in first-order form of (3.1) where
-0 [0 I ] - [0] -
x [0-], A [0 b B=|,| c=[1 0]
P,—u—2D,,sin(8,)— D,;sin(8, — 0,) — Dy53sin(0,) — Cp3c08(8; — 6,) + Cy3c05(8,) P
M=y,

Cr,pn)= . . . )
8(Cxu) [P3~y.72D13sm(02)—DBsm(Hz—Bl)—D,zsm(el)—CBcos(l)z—91)+C12cos(01)

sects the curve A(jw) transversally at a point P’ with A(jo')=
—1+ 0"%¢(w,). If there are no other intersections of any of the
characteristic loci of G(jw,u)J(n) and the closed line segment
connecting —1+ jO to P’, then there exists 8,>6,>0 and
wg > wy > 0 such that

a) if 8'< 8, and |0’ — w,| < w,, the system (3.1) has a periodic
solution e(#) of frequency w = @'+ O(()"‘) and such that

2
e(t)=e,+ Y. E*e™ ' +0(6%)
k=-2
and b) this periodic orbit is unique in a ball centered at x, and
of radius O(1). If ' < 6, and o’ — w,| < @,, the periodic orbit is
the unique attractor in a ball centered at x, and of radius O(1)
if the following encirclement condition holds: the total number
of anticlockwise encirclements of the point P'+ 8{(w,) by the

Our next task is to transform (4.1) into an equivalent feedback
system as in (3.4). One simple choice is to let the matrix R=0
in (3.3). However, a simple calculation shows that at s = 0, G(s)
is undefined. Therefore, we choose R = I to avoid singularities
on the Nyquist contour, which gives us

1
s2+ys—1 0
G(s)= 1 (4.2a)
0 s2+ys—1
f(e,u)=g(—e,p)+e. (4.2b)
The Jacobian, J = D, f, is
_|e+z Bty
nr=[5tz 8] 3)
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Fig. 1. The postbifurcation principal loci branches corresponding to Py =
—1.144, e* = (— 1.040, —0.5168), w, =1.05 r/s.

where
a=D,cos(e;)+ Dyscos(e;)+ Dyscos(e;—e;)+1  (4.42)
z=Dy,c08(ey)— Dyzc0s(e;)]+Cpsin(e; — €;) (4.4b)

B=— Dycos(e;—e,)+{D,cos(e;) + Dyycos(ey)} /2

+{Cy,sin(ey) + Cyzsin(ey)} /2 (4.4¢)
y={Dyscos(e;)— Dyycos(ey)}/2+ Cyssin(e; — e3)
+{—Cy,sin(e;) + Cyzsin(e,)} /2 (4.4d)
thus 'y
’ _ e +z B+y
G(s)J s2+7s—1[ﬂ-y a—z]' 4.5)
The characteristic functions of G(jw)J are
) (0? +1) + joy
A(jo)=~{atyz+B—-y) (4.6)

w'+(2+y)0?+1’

It can be seen that the pole polynomial, defined in terms of the
Smith-McMillam form [5), of the open loop transfer function
matrix G(s)J is

p(s)=(s2+ys-1)° (4.7)
implying that G(s)J has two positive real poles and two negative
real poles. The generalized Nyquist stability criterion states that
the number of encirclements of the point (—1+ j0) by the
characteristic loci must equal to the number of poles in the
right-half plane for the closed loop system to be stable. Since
G(s)J has two positive real poles the characteristic loci must
encircle the point (— 1+ j0) twice to indicate that the system is
stable.

Setting y = 0.05 and using the parameter values listed, we
have performed the necessary computations as the bifurcation
parameter P, is varied through its critical value. Note that the
critical value of P, is shifted from —1.155 to approximately
—1.146 with introduction of the uniform damping y = 0.05. For
P, < =1.146, the characteristic loci encircle (—1+ jO) twice indi-
cating a stable system. As P, approaches its critical value, a
locus approaches (—1+ j0). When P; passes through its critical
value, the the locus passes through (—1+j0) and no longer
encircles it, indicating an unstable system as shown in Fig. 1.
This behavior of the characteristic loci corresponds to the cross-
ing of imaginary axis by two system eigenvalues of the linear
system.

The correction vector, ¢, was calculated and is shown in Fig.
2. We see that one of the loci intersects with ¢, which indicates
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Fig. 2. Asymptotic attraction to the limit cycle of a postbifurcation trajec-
tory initially far from the equilibrium point; Py = — 1.144.

that a limit cycle does exists. Using the perturbation argument
from above (part b of Theorem 3.1) implies that the limit cycle is
stable. The frequency of the limit cycle is approximately the
same as the frequency associated to the bifurcation point.

To verify our analysis, (4.2) were integrated with a
Runge-Kutta program. The system converges to the equilibrium
for prebifurcation conditions. Fig. 2 corresponds to the condi-
tions in Fig 1. The system converges to a steady state oscillation
with frequency = 1.2 rad /s which is close to the predicted value.

V. CONCLUSIONS

In this paper we have shown how the frequency-domain
version of the Hopf bifurcation theorem can be applied to the
analysis of flutter instability in electric power networks. Such
instabilities have appeared in the literature with increasing
frequency in recent years and are evidently induced by heavy
loading of the transmission system. The frequency-domain anal-
ysis not only establishes the existence of a limit cycle but
provides a convenient test for stability. We emphasize the prac-
tical importance of establishing the type of Hopf bifurcation,
i.e., subcritical or supercritical. Systems that operate near a
subcritical Hopf bifurcation point are clearly vulnerable to dis-
turbances.

One of our objectives has been to complete the analysis
pertaining to the flutter instability identified in the three-
machine network used as an example in [7]. It has been shown
that the instability encountered therein is indeed a Hopi bifur-
cation and that it is supercritical. The results of the analysis
have been verified by computer simulation.

Finally, we note that the frequency-domain analysis is ex-
tremely simple to carry out on our small example and shows
feasibility for application to systems of larger scale and with
more complex models.
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On Computing 2-D Systolic Algorithm for Discrete
Cosine Transform

MOON HO LEE

Abstract —In this paper, we propose an algorithm on a two-dimen-
sional systolic array for discrete cosine transform (DCT). It is based on
the inverse DFT version of the Goertzel algorithm via Horner’s rule.
This array requires N cells and multipliers, takes yN +2 clock cycles to
produce a complete N-point DCT, and is able to process a continuous
stream of data sequences.

I. INTRODUCTION

In recent years, there has been a growing interest regarding
the applications of the discrete transforms to digital signal
processing [1], [2]. The DCT is usefully accepted as the best
suboptimal transformation for picture coding [3]. To minimize
the computation time, researchers have recently been trying to
integrate the complete transformation process on to a single
VLSI chip. Jutand ez al. reported the design of a processor for
two-dimensional (2-D) DCT, which was the row—column decom-
position [4].

Because of the neat optimal property of the DCT, it is widely
used in the processing of 2-D signals. In particular, it has been
found to be useful in the transform domain coding of TV images
in real time. Many processors have been designed to meet the
real time throughput requirements of these applications. Fast
DCT algorithms follow the matrix decomposition itself and the
other discrete transform.

Although the various algorithms for signal processing are
implemented in the systolic architecture, fast DCT algorithms,
which are proposed by Chen and Lee [5], [6], are difficult to
implement in the systolic architecture because they lack the
regularity and local connectivity in the signal flow graph. In
contrast, to overcome these problems, a fast DCT algorithm for
systolic array is derived from a 4N-point Winograd-Fourier
transform [7].

In this paper, we divide the DCT into the inverse DFT(IDFT)
and the multiplication part in order to realize a 2-D systolic
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array for DCT. The transformation into 2-D index space and the
Goertzel algorithm via Horner’s rule allowed the DCT to be
mapped onto 2-D systolic array, which is a modular processor
array with local communication. The computational time of this
2-D systolic array is faster than that of the 1-D systolic array [8].
This array is flexible and can be made compatible with other
orthogonal transforms by changing the array coefficients [9].

II.  2-D SystoLic ARrRAY FOR DCT
The N-point DFT is defined as

N-1

X(k)= L x(mwt

)

for k=0,1,---, N —1, where W, = exp(— j2m /N).

If N=p-gq, in order to process 1-D DFT in the 2-D systolic
array, we define the following mapping index between the input
and output data.

n=j
k=n 2
where j=qi+j,t=pr+t,and0<i,t<p—-1,0<j,r<qg-1.
Therefore, the N-point DFT of a sequence Xq,X;, ", X, 1, I8
defined as follows [10]:
p—-1lg-1 .
X, = Z E XiiWI‘(Jpr+'xqi+l) (3)
i=0j=0

for r=0,1,---,g—1 and t=0,1,---,p—1, where r,t denotes
the column and row index of the output data from the PE’s, and
i,j represents the row and column index of the input data, fed
into the PE’s.

The DCT of a data sequence f(n), n=0,1,---,N—1 is de-
fined by [3]

F(k)= C(k)Nilf(n)cos[(Zn +1)km /2N]

n=0

for k=0,1,--,N—1, where C(k)={1/v2, for n=0, and 1,
forn=1,2,---, N —1. Assuming N is even, define a new N-point
sequence x(n) by [11]

x(n)=f(2n)
x(N-1-n)=f(2n+1),

With this substitution (4), can be rewritten as

(C)

n=0,1,--,N/2-1. (5)

N/2-1
F(k)= C(k){ Y x(n)cos[(4n+1)kw /2N]

n=0
N/2-1
+ x(N—l—n)cos[(4n+3)k1r/2N]}. (6)
n=0
Letting n'=N—1—n in the second sum, simplifying and re-
combining the two sums yields

F(k)= C(k)Nilx(n)cos[(4n +1)kw /2N]. )
n=0

Thus the DCT F(k) can be evaluated as

F(k) =C(k)Re{exp[jkm/2N]-Z(k)} ®
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